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We study the drag force experienced by an object slowly moving at constant velocity through a two-
dimensional granular material consisting of bidisperse disks. The drag force is dominated by force chain
structures in the bulk of the system, thus showing strong fluctuations. We consider the effect of three important
control parameters for the system: the packing fraction, the drag velocity and the size of the tracer particle. We
find that the mean drag force increases as a power lawsexponent of 1.5d in the reduced packing fraction,
sg−gcd /gc, asg passes through a critical packing fraction,gc. By comparison, the mean drag grows slowly
sbasically logarithmicd with the drag velocity, showing a weak rate dependence. We also find that the mean
drag force depends nonlinearly on the diameter,a of the tracer particle whena is comparable to the surround-
ing particles’ size. However, the system nevertheless exhibits strong statistical invariance in the sense that
many physical quantities collapse onto a single curve under appropriate scaling: force distributionsPsfd
collapse with appropriate scaling by the mean force, the power spectraPsvd collapse when scaled by the drag
velocity, and the avalanche size and duration distributions collapse when scaled by the mean avalanche size
and duration. We also show that the system can be understood using simple failure models, which reproduce
many experimental observations. These observations include the following: a power law variation of the
spectrum with frequency characterized by an exponenta=−2, exponential distributions for both the avalanche
size and duration, and an exponential fall-off at large forces for the force distributions. These experimental data
and simulations indicate that fluctuations in the drag force seem to be associated with the force chain formation
and breaking in the system. Moreover, our simulations suggest that the logarithmic increase of the mean drag
force with rate can be accounted for if slow relaxation of the force chain networks is included.
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I. INTRODUCTION

Granular materials are of great interest for their rich phe-
nomenology and import applicationsf1g. When subject to
external stresses, a dense granular system forms inhomoge-
neous force chain networks where only a fraction of the
grains carry most of the forcef2g. The spatial scale of these
force chains can extend over many grain diameters, and the
chain lengths may be comparable to the system size. The
separation between microscopic and macroscopic scales
poses a theoretical challenge if one attempts to describe a
granular system using a continuum approach. Recently, ex-
perimental works by several research groupsf3–8g suggest
the importance of strong stress fluctuations in granular sys-
tems. The fluctuations, as characterized by the standard de-
viation or rms of the stress, can often be somewhere from 1
to several times of the mean stress. However, questions in-
volving the dynamics, nature, and length/time scales associ-
ated with these fluctuations are still poorly understood. An
improved understanding of these questions could provide in-
sight into describing a number of practical applications and
such phenomena as earthquakes and avalanches. Another
motivation concerns exploring jammingf9,10g in granular
materials. Specifically, jammed states in granular systems
may be reached when the densityspacking fractiond of the
system is high enough.

In this regard, slow drag experiments, the subject of this
paper, provide a useful way to understand the nature of stress
fluctuations and slow dynamics in granular materials. We
have used a similar experimental approach to probe the ther-
modynamic temperature in granular systems, as reported
elsewheref11g.

In molecular fluids, the drag force on a particle arises
from viscous interactions, i.e., from collisional interactions
of the particle and surrounding molecules that involve mo-
mentum transfer. This drag force is linearly proportional to
the object’s velocity through the fluid when the velocity is
not very large.

In dense granular media, the origin of the drag force dif-
fers in several respects. First, frictional interactions exist be-
tween a drag particle and surrounding grains. Second, but
related, is the existence of force chains. These relatively
long-range inhomogeneous structures can provide an elastic
srigid in the limit of infinitely stiff particlesd resistance to a
moving particle.

In Fig. 1scd, and Fig. 2 we show such force chain struc-
tures obtained using photoelastic techniquesf6,12g. These
force chains are typically inhomogeneous and anisotropic in
nature, and constantly form and break when an object moves
through the granular media, leading to strong fluctuations in
the drag force. In the experiments presented here, we con-
sider the drag force experienced by a tracer particle moving
through a two-dimensionals2Dd granular material consisting
of bidisperse disks. In our experiment, the size of the tracer
particle is comparable to the surrounding grains, which al-
lows us to explore fluctuations at the grain scale. The experi-
mental results presented here are described well by simple
failure models.

A number of experimental and theoretical results provide
important background to the present studies. Experiments
that are relevant here include the “carbon paper” studies of
Muethet al. f4g, who measured the static forces of a material
se.g., glass beadsd at the boundary of a container, and showed

PHYSICAL REVIEW E 71, 011302s2005d

1539-3755/2005/71s1d/011302s19d/$23.00 ©2005 The American Physical Society011302-1



that the distribution of forces,f, is exponential for largef.
Sheared granular systems, both in 2Df6,7g and 3Df5g, show
strong force/stress fluctuations. In addition, the 2D experi-
ments by Howell et al. f6g showed a well-defined
strengthening/softening transition as the packing fraction of
the system passed a critical packing fractiongc. The mean
stress in such a system varies as a power law in the reduced
packing fraction,

r =
g − gc

gc
, s1d

with an exponent between 2 and 4, depending on the particle
type. Later experiments on similar 2D systems by Hartleyet
al. f7g showed that the mean stress increased logarithmically
with the shearing rate, which may be related to collective
slow relaxation of the force chain network. Three-
dimensionals3Dd experiments by Milleret al. f5g identified
rate-independent power spectra,Psvd, for the stress time se-
ries which fell off asP,v−2 at high spectral frequencyv.
Experiments on 3D drag by Albertet al. f13,8,14g relate
most closely to the present experiments. These studies
yielded the drag force experienced by a rod as it was dragged

through granular materials such as glass beads. Depending
on the rod insertion depth and the size ratio between the rod
and the grain, three types of drag force time series were
observed, a periodic regime where the signal resembles an
ideal sawtooth pattern, a random regime, and a stepped re-
gime with sawtoothlike steps. These authors focused their
work on the periodic and stepped regimes, characterized by
stick-slip fluctuations due to successive formation and col-
lapse of jammed states. A particularly interesting finding of
these studies was that the mean drag force on the rod was
independent of the drag velocity.

Several theoretical worksf15,16g have provided a context
for understanding the stress distributions and stress fluctua-
tions in granular materials. Theq-model of Coppersmithet
al. f15g predicts a force distribution for static systemsPsFd
~FN−1exps−F /F0d, whereN is the system dimension. This
model only considers the vertical force transmitted through a
regularly packed lattice. Vertical forces on a grain in one
layer are balanced by transmitting fractions,q ands1−qd, to
the two supporting grains in the next layersassuming a 2D
systemd, whereq is a random number uniformly distributed
in 0øqø1. We note for exponential force distributions, that
the mean is of the order of the width of the distribution.
Other lattice modelsf17g and calculations by Radjai using
contact dynamicsf18g also predict exponential force distri-
butions for large forces.

Recently, Kahnget al. f16g have used a stochastic failure
model to understand the 3D drag experiments of Albertet al.
f13,8,14g. These authors used simple springs with random
thresholds to model the jamming and reorganization of
grains. Among other results, the model reproduces the ex-
perimentally observed periodic sawtooth fluctuations in the
drag force. We will use this simple failure model, with modi-
fications, later in this paper to understand the experiments
described here.

FIG. 1. sColor onlined sad Schematic drawings of the apparatus:
a cross-sectional view, where the plane of the section is through a
diameter of the apparatus, which has circular symmetry in the hori-
zontal plane. The bottom plate, together with particles, rotate as a
rigid body at a slow velocity. The inset shows how a digital force
gaugesF.G.d is mounted on the top plate and connected with the
tracer particle through the force gauge hole.sbd An actual image
taken from the experiments showing the 2D granular system com-
posed of bidisperse disks.scd A stress image, obtained using pho-
toelasticity f6,12g, showing force chain structures when the tracer
particle is dragged through the medium.

FIG. 2. Visualization susing photoelastic techniquesd of the
loading up of the force chains and their subsequent failure/
disappearance. The media in the images move in the clockwise
direction. These six images are ordered sequentially, and the corre-
sponding times are 0,t0,2t0,5t0,6t0,7t0, wheret0, the time between
each snapshot, is 1045 seconds.
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The organization of the remainder of this paper is as fol-
lows. In Sec. II, we describe the experimental setup and pro-
cedures. In Sec. III, we report experimental results. In Sec.
IV, we describe models and simulations. Finally, we draw
conclusions in Sec. V.

II. EXPERIMENTAL SETUP AND PROCEDURES

The experiments were carried out in an apparatus which
is, in spirit, similar to the one in Ref.f13g, except that the
one used here is two dimensional in character, whereas the
one used by Albertet al. was three dimensional. We show a
cross-sectional view of the apparatus in Fig. 1sad. The bot-
tom plate was driven by the center shaft, both of which are
supported by ball bearings mounted on a stable metal table
snot shownd. A stepper motor ran at a low frequency to drive
the bottom plate. The top plate did not rotate and had no
contact with the rotating bottom plate or the particles. The
granular medium consisted of a single layer of bidisperse
disks with diameters 0.744s,2400 particlesd and 0.876 cm
s,400 particlesd where the thickness of both types of disks
was 0.660 cm. Figure 1sbd shows an actual image from the
experiment where the two types of disks can be identified.
The disks were placed on the bottom plate and confined in
the annular space between two concentric rings. The inner
ring radius was 10.5 cm and the outer ring radius was 25.4
cm. When the bottom plate was rotating, the disks moved
with it as a rigid body, due to friction. This frictional force
with the substrate was relatively weak compared to the
forces between particles associated with force chains. The
centrifugal force experienced by the disks was negligible due
to the slow rotation speed. Note that this apparatus is not to
be confused with a Couette shearing apparatus where either
the inner wheel or the outer wheel is moving. In this appa-
ratus, both inner and outer boundaries remained fixed and the
driving was provided by the moving bottom plate.

A digital force gaugesModel DPS-110 from Imada Inc.,
resolution 0.1 gd, shown in the inset of the Fig. 1sad, was
mounted on one side of the top plate. The force sensor was
connected with a tracer particle through a hole in the top
plate, and in the middle of the annular space, atr =17.95.
The reading on the force gauge, which yielded the instanta-
neous tangential force, was recorded as a time series by a
computer through its serial communication port, as in Fig. 3.
When the granular medium moved, force chains form in the
bulk of the system, as show in Fig. 1scd and Fig. 2 using
photoelastic techniquesf6,12g. The pins on the top plate
stirred the particles. These had a diameter of,0.3 cm, and
were located at radii of 12.9 cm and 23.0 cm.

There are three important parameters that we explored in
the system, i.e., the rotation ratev, the system packing frac-
tion g sor densityd, and the tracer particle sizea. We varied
the rotation ratev over two orders of magnitude, fromv
=6.33310−6 to 8.67310−4 Hz scorresponding tov=7.14
310−6 to 9.78310−4 m/sd, the packing fractiong from
0.561 to 0.761sthese values are global packing fractions
since the system is not completely uniformd, and the tracer
particle diameters over the set of diametersa=0.744, 0.876,
1.250, 1.610, and 1.930 cm.

III. EXPERIMENTAL RESULTS

In this section, we report the experimental results. We first
consider the effect of rotation rate, and we then turn to the
effect of changes in the packing fraction.

A. Changing the medium rotation rate

An initial series of experiments was carried out at a fixed
packing fractiong=0.754, which is above the critical pack-
ing fractiongc, discussed in more detail in the next section.
Here, we varied the rotation rate overv=6.33310−6øv
ø8.67310−4 Hz scorresponding to 7.14310−6øvø9.78
310−4 m/sd. sThe velocity of the tracer isv=vr, where r
=17.95 cm is the radial location of the tracer.d In Fig. 3, we
show three sets of force time series, obtained with a tracer
size a=0.876 cm, and rotation rates that spanned the full
range of v’s, namely sad v=6.3310−6 Hz, sbd v=5.0
310−4 Hz, andscd v=8.7310−4 Hz. As one would expect,
the force time series in Fig. 3 show strong fluctuations. In-
terestingly, an enlarged view of a small section of Fig. 3scd,
seems qualitatively similar to the slower run in Fig. 3sad,
which suggests possible scaling behavior. We will return to
this point below in the context of power spectra for these
data.

1. Mean drag force and force distributions

In Fig. 4sad, we show the mean drag force,kFl, as a func-
tion of rotation rate,v, for tracer particles of five different

FIG. 3. Force time series at different medium velocities for a
given packing fractionsg=0.754d and a given tracer sizesa
=0.876 cmd. The rotation rates aresad v=6.3310−6 Hz, sbd v
=5.0310−4 Hz, andscd v=8.7310−4 Hz. The velocity is obtained
according tov=vr, where r =17.95 cm. These force series show
strong fluctuations. An enlarged view of a small segment ofscd also
suggests self-similar structures in the system. The force is normal-
ized by the acceleration of gravity and has units of grams.
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diameterssa=0.744, 0.876, 1.25, 1.61, and 1.93 cmd. For
each of these tracer sizes, the mean drag force increased only
slightly sby a factor less than 2d for a variation by more than
two decades inv. To emphasize this slow increase, we plot
the same data on log-lin scales in Fig. 4sbd. The data can be
fitted by a straight line, indicating a logarithmic variation of
kFl with v. This is consistent with the results by Hartleyet
al. f7g who found that the total stress in a system of similar
particles undergoing slow shearing also increases logarithmi-
cally with the shearing rate.

We emphasize that this slow increase in the mean force
differs significantly from the drag force in a fluid, where the
mean force increases linearly with the drag velocity when the
velocity is not too large. This is also in contrast to rate-
independent stresses in Mohr-Coulomb friction models
f19,20g for dense granular systems. It is consistent with sev-
eral rate-dependent friction modelsf21g.

In Fig. 5, we show the standard deviation of the drag
force, ssFd, as a function of the rotation rate, wheressFd
=Îs1/Ndoi=1

N sFi −kFld. N is the number of measurements in
the force time series andFi is the ith measurement. We note
that the standard deviation is of the same order of magnitude
as its corresponding mean, and that it also increases roughly
logarithmically with the rate.

The slow increase of the mean drag force with rate ap-
pears to differ from experimental observations in some pre-
vious studies, including those by Wieghard and by Albertet
al. f22,13g. In particular, Wieghardf22g measured the drag
force experienced by vertical rods dipped into a rotating bed
of fine dry sand. In this case, the drag force had a weak
dependence on the velocity: first decreasing then increasing
with increasing velocity. In the experiments by Albertet al.
f13g, the mean drag force on a cylindrical rod was found to
be independent of the drag velocity.

FIG. 4. sad The mean drag force,kFl, as a function of rotation
rate, v, for tracer particles with different sizessa=0.744, 0.876,
1.25, 1.61, and 1.93 cmd. sbd Same data assad, but on log-lin scales
to emphasize that the mean force increases slowlysbasically loga-
rithmicallyd with the medium velocity. Throughout, we use a force
normalized by the acceleration of gravity.

FIG. 5. sad Standard deviation of the drag force as a function of
rotation rate,v, for tracer particles with different sizessa=0.744,
0.876, 1.25, 1.61, and 1.93 cmd. sbd Same data assad, but plotted on
log-lin scales to emphasize that the standard deviation also in-
creases logarithmically with the medium velocity.
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In the case of Wieghard’s experiments, the explanation for
the difference is relatively straightforward. The velocity
range used in Wieghard’s experiments is very different from
both that used in our and the Albertet al. measurements.
Wieghard investigated velocities ranging from about 0.2 m/s
to 2 m/s; the minimum of the drag force appeared between
0.5 m/s and 1 m/s depending on the rod insertion depth.
Wieghard explained the variation of drag with speed in the
following way. The normal pressure and the frictional forces
along the slip surface provided resistance. At lower speed,
the inertial force of the sand flowing around the body was
small and negligible. When the velocity increased, there was
a reduction in drag because, presumably, more contacts were
slipping and kinetic friction is smaller than static friction. At
larger speeds, friction became less dependent on the velocity;
however, when the velocity was increased, an additional in-
ertial term led to an increase in the drag force.

The velocities used in the Albertet al. experiments and in
the current experimentssof the order of 1 mm/sd are more
comparable and are much slower than that of Wieghard. To a
first order approximation, the present data are consistent with
Albert’s data, i.e., they both show that the mean force is
roughly independent of the velocity. However, we do see a
slow, logarithmic increase in the mean force that differs from
the observation of Albertet al.

The explanation for this difference is not known, but it is
interesting to speculate on the cause. Of course, there is the
obvious difference in dimensionality. However, another dif-
ference between the two experiments is that the present par-
ticles were softer, i.e., had a lower Young’s modulus than
those used by Albertet al. In the present experiments, the
particles deformed elastically, whereas in the experiments of
Albert et al.an external spring was deformed. The real issues
include differences in the elastic time scales versus charac-
teristic times for frictional eventsse.g., creation and destruc-
tion of force chainsd and the amount of elastic deformation
of particles. In this regard, we note the work by Campbell
f23g. Recent experiments by Hartleyet al. f7g using the same
type of particles as those of the present experiments showed
a qualitatively similar relation between the mean force and
the rate, albeit in a Couette system. These experiments also
showed that under static shear stresses, there was a logarith-
mically slow relaxation of the force network. Later in this
work, we will use a modified failure model inspired by this
observation to reproduce the slow increase in the mean drag
force.

In Fig. 6, we show drag force distributions for different
rotation rates. The left-hand panel of Fig. 6 gives force dis-
tributions for a tracer particle of diametera=0.744 cm, and
the right-hand panel gives data fora=1.93 cm. From Figs.
6sad and 6scd, we note that, irrespective of the particle size,
the force distributions broaden and shift towards larger
forces as the rotation velocity increases. Interestingly, these
force distributions collapse reasonably well onto a single
curve when scaled by the corresponding mean force, as
shown in Figs. 6sbd and 6sdd. Thus, the mean force is one of
the key control parameters for this system. These data indi-
cate a roughly exponential fall-off for large forces, as seen in
Figs. 6sbd and 6sdd, which shows the scaled distributions on
semilog scales. As the tracer size increases, one noticeable

change in the force distributions is that the probability of
very small force becomes smaller. An intuitive explanation is
that a larger tracer particle is more likely to be in contact
with some strong force chains at any time, thus reducing the
probability of a very small force. This argument must be
modified for tracers that are much larger than the background
particles. As the tracer particle diameter becomes very large,
there are multiple contacts, some of which involve strong
force chains, and we expect that the distribution forF / kFl
will no longer depend on the tracer diameter.

2. Power spectra and correlations

The power spectra,Psvd, resulting from such force time
series provide a useful quantitative measure of the relevant
time scales for force fluctuations.sNote that the mean force
has been removed in calculating the spectra.d In Fig. 7sad, we
show Psvd versus the frequency,v, on log-log scales. At
high frequency, the spectra fall off asPsvd~1/va, with a
.2. At low frequency, the spectra vary more weakly, and are
almost independent of the frequency. The 1/v2 behavior at
high frequency can be explained by assuming a series of
random jumps occurring on time scales at least as fast as a
crossover time,1/v*. This time corresponds roughly to the
time for the tracer particle to travel a few disk diameters. We
will come back to this time scale below in more detail. The
power spectrum at low frequency is presumably explained
by the fact that there are no strong correlations at very long
time scales in the force time series. A 1/v2 behavior occurs
in many other contexts, e.g., for frictional fluctuationsf24g
and stick-slip motionsf25g.

These spectra also show interesting rate invariance. In
Fig. 7sbd, we rescale the power spectra data of Fig. 7sad by
dividing the v-axis by the corresponding rotation rate,v0,
and multiplyingP by v0. This corresponds to rescaling time
by 1/v0, or alternatively by replacing time by angular dis-
placement. Figure 7sbd shows an excellent collapse of all the
data for the scaled power versus the scaled frequency, and
implies rate invariance in the fluctuating component of the
stresses. Such rate invariance in stress fluctuations has also
been observed by Milleret al. f5g and Albertet al. f14g. An
argument for this rate invariance is provided in Ref.f26g
which suggests that the system spends much of its time in
states close to static equilibrium, so thatv0 sets the time
scale to move between states. The fact that the spectra col-
lapse is presumably connected to the qualitative appearance
of self-similarity of the time traces.

We can better understand the role ofv* by calculating the
correlations resulting from these force time series. In Fig.
8sad, we show correlation functions,Cstd, for time series at
different rotation ratesfnote that CsDtd=kFstdFst+Dtdl,
where the brackets denote an average of time, andCsDtd is
simplified toCstd when no confusion is causedg. These cor-
relation functions generally drop quicklysexponentiallyd to
zero over a time scale oftc, and then fluctuate around zero,
indicating that the signals are uncorrelated beyond that time.
If we rescale the data of Fig. 8sad by multiplying thet-axis
by the corresponding velocities, all correlation functions col-
lapse reasonably well onto a single curve, as shown in Fig.
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8sbd. The collapsed curve defines a characteristic length
scale,Dxc, which is comparable to one disk diameter. Intu-
itively, this can be explained by the fact that force chains
contacting the tracer particle tend to form and then fail when
the tracer particle moves by a few grain diameters, in agree-
ment with the characteristic length scale revealed in Fig.
8sbd.

We note here that the correlation data and the power spec-
tra data are a Fourier transform pair according to the Wiener-
Khinchin theoremf27g. Thus, the 1/v2 power spectrum at
high frequency can also be derived from the correlation data
at small time scales. Using the factfinset of Fig. 8sbdg that
the correlation functions decay exponentially at early time as
Cstd=A0e

−t/tc, the corresponding power spectrum can be ob-
tained by performing a Fourier transform

Psvd =E
−`

`

Cstde−ivtdt =
2tc

1 + svtcd2 < v−2, if v @ 1/tc.

Thus, for large frequencysv@1/tcd, we expect the power
spectrum will decay as 1/v2.

3. Avalanches and the force chain force constant

If we define an avalanche event to be a monotonic de-
crease in the force time series, we can investigate the stress
release process in the system more quantitativelyssimilar
results are found for the stress build-up processd. This ap-
proach is similar in spirit to the approach of self-organized
criticality sSOCd f28g, and it is interesting to ask whether any
sign of SOC is present in this system.

We denote the size of an avalanche to be the magnitude of
the drop of the force and the duration to be the time it takes
for an avalanche event to take place, as illustrated in Fig. 9.
With such definitions, we can calculate the probability distri-
butions for both avalanche sizes and avalanche durations. We
show such distributionssproperly rescaledd in Fig. 10 for
force time series obtained at different velocities. It is possible
to collapse all the distributions for avalanche size by dividing
the horizontal coordinate for each set of data by the corre-
sponding mean avalanche sizesand therefore necessarily
multiplying the vertical coordinate by the mean avalanche
sized. The avalanche duration distributions are similarly res-
caled by the corresponding mean avalanche duration of each
data set. In Fig. 10, we show both data sets on log-lin scales,

FIG. 6. sad Distributions of drag force at different rotation rates for a tracer particle of sizea=0.744 cm.sbd Same data assad, but with
the horizontal axis rescaled by the corresponding mean force, and the vertical axis multiplied by the mean force. The force distributions
collapse to a single curve. Note that since the vertical axis insbd is plotted on a logarithmic scale, the fall-off of the distribution at larger
forces is roughly exponential.scd and sdd are similar tosad and sbd, but for a larger tracer sizea=1.93 cm.
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which emphasizes the roughly exponential nature of the dis-
tributions. The flat tails at larger values of the horizontal
coordinates may be due to insufficient statistics. These data
suggest that there is a large probability of finding small ava-
lanche events in the system, while the probability of finding
a large avalanche event becomes exponentially small. Note
that these distributions do not show any indication of power
laws, as one would expect for a self-similar process and
SOC.

It is interesting to ask how the mean avalanche size and
duration change withv. We show, in Fig. 11sad, data for the
mean avalanche size,DF, and duration,Dt, as functions of
the rotation rate. The mean avalanche size increases withv
and the mean avalanche duration decreases withv. Both the
mean size and the mean duration vary as power laws withv.
Particularly interesting is the fact that the ratio of the mean
avalanche size to duration, Fig. 11sbd, also varies essentially
linearly as a power ofv. The linear relationship between
DF /Dt andv sor the medium velocityvd suggests that there
is an effective spring constant for the force chains, that can
be defined asDF / svDtd. We develop this point further in the
next few paragraphs.

An obvious question is whether a large avalanche event
sin terms of its sized is in general associated with a longer
duration, or perhaps vice-versa. This question is addressed in
Fig. 12 by calculating the 2D probability distributions for

avalanche sizes and durations. These distributions are given
in Figs. 12sad–12scd for different drag velocities, using a gray
scale representation. We see that these distributions are al-
ways distributed around certain directions with positive
slopes, which suggests that, in general, a larger avalanche
event lasts longer. We also note that the slope of the distri-
bution orientation increases with increasing drag velocity.
Based on the scalings of Fig. 10, if we rescale the vertical
and horizontal axes in Fig. 12 by the mean avalanche size
and mean avalanche duration, respectively, we expect that
the resulting distributions for different velocities would be
peaked around the same orientation. Indeed we have tested
that this is the case.

FIG. 7. sad Power spectra,Psvd, from force time series at dif-
ferent rotation rates.sbd The scaled power,v0Psvd is plotted
against the scaled frequency,v /v0, wherev0 is the rotation rate.
The data collapse nicely, demonstrating rate independence. At large
spectral frequencyv, the power spectra vary asv−2, and at small
frequency, the power spectra are flat, suggesting that there is no
correlation at time scales larger than some constant factor of the
inverse rotation rate.

FIG. 8. sad Correlation functions,Cstd, of the force time series at
different rotation rates. We note that correlation functions at all
rotation rates first drop quicklysexponentiallyd over a time scale of
tc, then fluctuate around zero.sbd Rescaled correlation functions,
CsDxd vs Dx, whereDx=vDt=rvDt. All rescaled correlation func-
tions collapse to a single curve, indicating a characteristic length
scale,Dxc. Note that the correlation data and power spectrum data
from Fig. 7 are related through Wiener-Khinchin theorem. Inset of
sbd shows the correlation function for smallt’s, which corresponds
to large frequency in the spectra.
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Since the 2D distributions for avalanche size and dura-
tion, Fig. 12, tend to be oriented around a certain direction, it
is useful to consider an alternative approach to characterize
these events. Namely, we define the avalanche rate to be the
ratio of the avalanche size and the corresponding duration,
i.e., srated=ssized / sdurationd=DF /Dt. We show the distribu-
tions of rates for different medium velocities in Fig. 13sad.
From this figure, we see first that each distribution is peaked,
which is consistent with our claim that events have a most
probable direction in Fig. 12, albeit with some spreading

around that direction. Second, this figure shows that when
the rotation rate increases, the position of the peak shifts to
the right.

We extract the peak positions and plot them as a function
of the medium velocity, Fig. 13sbd. This figure shows that the
peak position increases roughly linearly with the medium
velocity. If we denote the slope of a least-squares linear fit to
these data askeff, then,

keff =
DF

Dt

1

v
=

DF

Dx
. s2d

Thus, keff resembles the force constant of a simple spring.
Indeed, Fig. 1scd shows that the resisting forces are mainly
carried through chainlike structures, and one might imagine
that each of these force chains acts like a spring. The collec-
tive force constant of these force chains is then rather well
defined, as suggested by the quantity,keff, extracted from Fig.
13sbd. One must keep in mind that since Fig. 13sbd is ob-
tained only for peak positions, the actual effective force con-
stant at a given instant can vary around thekeff extracted
here. A similar observation has been made in Ref.f16g by

FIG. 9. A sample force time series where an avalanche event is
identified.

FIG. 10. sad Rescaled distributions of avalanche size, where the
horizontal axis is divided by the mean avalanche size and the ver-
tical axis is multiplied by the mean avalanche size. Inset shows the
same data in log-log scale.sbd Rescaled distributions of avalanche
duration, where the horizontal axis is divided by the mean ava-
lanche duration and the vertical axis is multiplied by the mean
avalanche duration. These distributions indicate an exponential de-
cay of probabilities of finding large avalanche sizes and durations.
Inset shows the same data in log-log scale.

FIG. 11. sad Mean avalanche size,DF, and duration,Dt, as
functions of the rotation rate,v. sbd The ratio of the mean avalanche
size to duration,DF /Dt, as a function ofv.
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Kahnget al.concerning their 3D drag experimentssee Fig. 2
in Ref. f8gd. However, the force constant revealed in those
experiments reflects only the force constant of the external
spring. That is, since it is much softer than the effective
spring constant of the grains, the force registered on the force
sensor is mainly due to the compression of the external

spring. By contrast, in our experiments, the effective force
constant gives a measurement of actual strength of the force
chains in the granular system. Specifically, the force constant
of the external spring in our apparatus is much stronger than
that associated with the particles.

The above analysis supports the idea that force chains
may be modeled by springs as proposed in the model by
Kahnget al. f16g. In Sec. IV below, we modify their model
to explain features of the data for the current experiments.

In the remainder of this section, we explore several other
features of the experimental results.

B. Changing the packing fraction

In this section, we describe experimental data and analy-
sis associated with changing the packing fractions in the sys-
tem. For this set of experiments, we fixed the rotation rate at

FIG. 12. 2D sgray scale representationd distributions of ava-
lanche size and duration for different rotation rates,sad v
=0.01s1/150d Hz, sbd v=0.05s1/150d Hz, and scd v
=0.13s1/150d Hz. These distributions tend to be largest along cer-
tain orientations/slopes. This slope increases when the rotation rate
is increased.

FIG. 13. sad Distributions of avalanche rates, for different rota-
tion rates, where the avalanche rate is defined as the ratio of ava-
lanche size to duration, or roughly the slope of an avalanche.sbd
The peaks in the avalanche rate distributions plotted against the
rotation speed. The slope of the resulting straight line fit gives an
effective force chain force constant,keff=sDF /Dtds1/vd=dF /Dx.
The inset shows a schematic of a force chain.
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v0=5.0310−4 Hz and the tracer size ata=1.25 cm. We note
that the process of pushing the tracer particlesand to a lesser
extent the pinsd through the background medium necessarily
produces some variation in the density of the material. The
effect from the pins is relatively small, perhaps a few per-
cent, but there is a wake that is devoid of particles that ex-
tends several particles behind the tracer.

1. Mean drag force and force distributions

When we change the packing fraction,g, we observe a
softening or strengthening transition similar to the one re-
ported in Ref.f6g. Specifically, wheng is below a critical
value,gc, the system is so loosely packed that it cannot sus-
tain force chains. In the regimeg,gc, when the grains make
contact with the tracer particle, they are almost immediately
pushed into open space, and no long-range force chains
form. On the contrary, when the packing fraction is above the
critical valuegùgc, there are always some force chains in
the bulk of the system, such as those shown in Fig. 1scd. In
Fig. 14, we show three sets of force time series data obtained
at different g’s. For the data ofg=0.561, which is below
gc=0.645, the forces are close to zero, with a small amount
of activity corresponding to those events when the tracer
particle makes contact with grains. Wheng=0.653, which is
slightly abovegc, we already see more activity, and the av-
erage force signal increases above the base line. Wheng is
increased further, say tog=0.754, the force signal becomes
much more active and the scale of fluctuations is signifi-
cantly larger.

Figure 15sad shows the mean drag force as a function of
the global packing fractiong. We identify two different re-
gimes in this figure. For smallerg’s, the mean force can be
fitted by a linear function ofg :F=ag+b, wherea andb are
constants, while for largerg’s, the mean force can be fitted
by a power law, which parallels the results of Howellet al.
f26g, F=Fc+dsg−gcdb, where d and b are constants. We

definegc as the crossover value from the linear to the non-
linear regime. In Fig. 15sbd, we show the mean force as a
function of reduced packing fraction,r =sg−gcd /gc, for g
ùgc on log-log scales to emphasize the power-law character
in the nonlinear regime. In that regime, the exponent of the
power law isb=1.53.

In Fig. 16sad, we show drag force distributions for differ-
ent packing fractions. As the packing fraction is increased,
the distributions widen and the mean becomes larger, consis-
tent with the data of Fig. 15. Again, if we rescale the force
distributions by the corresponding mean force, we obtain an
approximate collapse of all curves. Thus, the mean force is
also the appropriate scaling factor for the amplitude of the
drag force fluctuations.

Thus far, we have considered the mean properties and
distributions of the drag forces for different rotation rates and

FIG. 14. Force time series at different packing fractions for a
given rotation ratefv=0.075s1/150d Hzg and a given tracer size
sa=1.25 cmd. There exists a critical packing fraction,gc, similar to
that found in Ref.f6g ssee textd. Below gc, the force is relatively
small and the friction between particles and the bottom plate is
comparable with the contact force between particles; abovegc, en-
during contact forces dominate and force chains form in the bulk of
the system, leading to strong fluctuations in the force time series.
The mean drag force increases rapidly when the packing fraction is
increased.

FIG. 15. sad The mean force,kFl, as a function of the packing
fraction,g, for a tracer particle of sizea=1.25 cm. Wheng is below
gc, the mean force increases linearly withg; when g is abovegc,
the force increases like a power law, as shown insbd, the mean force
as a function of reduced packing fraction,r =sg−gcd /gc for packing
fractions greater thangc, on log-log scales.
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packing fractions. We now combine these results and exam-
ine how the control parameters,v and g, affect the drag
force.

Figure 17 shows the combined drag force distributions for
various rotation rates and packing fractions. The solid sym-
bols are data for differentv’s, and the open symbols are data
for different g’s. All the distributions are rescaled by their
corresponding mean drag forces. Again, we see all rescaled
curves have nearly the same form. We note, however, that
the collapse is not quite perfect for the smallest and largest
forces. This statistical invariance in the force distributions is
striking, since these data are obtained over a wide range of
rotation ratessmore than two decadesd and packing fractions.
This again confirms the key scaling role of the mean force.
We note too that these distributions decay roughly exponen-
tially for large forces, in the spirit of theq-model f15g, or
various other calculations for the forces on particles in a
dense granular material.

For a given tracer particle, changing the rotation rate or
changingg both affect the mean drag force, although the
former is only a weak effect. In Fig. 18sad, we combine the
data for mean drag forces from Figs. 4 and 15 in a single
plot, where the top axis is the rotation rate,v, and the bottom
axis is the reduced packing fractionr =sg−gcd /gc. Wheng is

FIG. 16. sad Distributions of drag force at different packing
fractions for a tracer particle of sizea=1.25 cm.sbd Same data as
sad, but with the horizontal axis rescaled by the corresponding mean
force, and the vertical axis multiplied by the mean force. Force
distributions collapse reasonably well onto a single curve.

FIG. 17. Rescaled force distributions for different rotation rates
and packing fractions. These distributions collapse reasonably well
onto a single curve, suggesting a strong statistical invariance after
rescaling by the mean force.

FIG. 18. sColor onlined sad The mean force as a function of drag
velocity and medium packing fraction for a given tracer particle.
The solid symbols are experimental data; the lines are a logarithmic
fit and a power-law fit, respectively.sbd With fits obtained fromsad,
we plot in sbd a 3D perspective plot showing how the mean force
changes in the parameter space formed byv andg. An increase of
v tends to have the same effect on the mean force as an increase of
g, although the former effect is much weaker.
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fixed, the mean forcessolid circlesd increases slowly withv,
where this slow increase is adequately described as a loga-
rithm. Whenv is fixed, the mean forcessolid squaresd in-
creases rapidly withg, and this increase is described by a

power law. If we assume thatF̄ can be written in a product

form asF̄= f1sadf2svdf3srd, for our given tracer particle size,
we find that a good description of the data is given by

F̄ =
1

14.51
s22.802 + 2.588 logvds2.502 + 174.91r1.529d.

s3d

Figure 18sbd shows the mean drag forceF̄ in a 3D perspec-
tive plot. From this figure, we see that an increase of the
rotation rate,v, leads to an increase of the mean drag force,
qualitatively resembling what occurs due to an increase in
the packing fraction,g, but on a much weaker scale. Similar
effects on the stress due to changes in the shear rate and
packing fraction were also observed in a 2D granular Couette
systemf7g.

We also examine how the diameter of the tracer particle,
a, affects the mean drag force. In Fig. 19, we show the mean
drag force as a function of the tracer diameter for different
rotation rates at a given packing fractiong=0.754. From
these data, we see that the increase in the mean force with
tracer particle size is faster than linear.

It is interesting to contrast these results with what one
would expect for a particle, typically much larger than a
molecule, that is moving through a viscous fluid. According
to Stokes’s lawf29g, the drag force is proportional to the
diameter of the tracer particle, the coefficient of viscosity of
the fluid, and the relative velocity of the fluid and the tracer.

It is also interesting to compare our results to the experi-
ments by Albertet al. f14g on drag through a granular mate-
rial. As noted, these authors observed rate independent
forces. They also found a linear dependence of the drag force

on the diameter of the drag rod. However, it is perhaps not
surprising that in the present experiments the diameter de-
pendence of the drag force is nonlinear, since the tracer par-
ticle size is comparable to the size of surrounding grainssthe
maximum size ratio is 2.6d, unlike the situation in the experi-
ments of Albertet al.

2. Rescaling of power spectra and avalanches

In Fig. 20sad, we show power spectra of force time series
for different packing fractions. In this case, variations of the
power spectra withg are qualitatively similar to those due to
changes in the rotation rate shown in Fig. 7sad, although the
magnitude of the changes withg is much greater. It is inter-
esting to rescale these spectra to see if they will collapse onto
a common curve. In this regard, we note from Parseval’s
theoremf27g, that the integral of the power spectral density

FIG. 19. The mean drag force,kFl, as a function of the tracer
particle diameter,a, for different rotation rates. For reference, the
mean diameter of the background particles is 0.763 cm.

FIG. 20. sad Power spectra,Psvd, from the force time series at
different packing fractions.sbd Scaled power spectra, with the ver-
tical axis divided by the mean square amplitude of the signal.
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over frequency is equal to the mean square amplitude of the
signal, i.e.,

1

2p
E

−`

`

Psvddv =
1

2p
E

−`

`

uFsvdu2dv =E
−`

`

ufstdu2dt, s4d

whereFsvd and fstd are a Fourier pair. Hence, the integral of
the power spectrum, which is proportional to the mean
square amplitude of force signals,kf2l=e−`

` ufstdu2dt, can be
used as an appropriate scale factor for the spectra in Fig.
20sad. Indeed, when these spectra are normalized by the cor-
respondingkf2l, we obtained a good collapse of data, as
shown in Fig. 20sbd. Additionally, we show the scaling fac-
tor, kf2l, versus the reduced packing fraction,r, in Fig. 21.
These data can also be fitted to a power law, and the expo-
nent is almost twice as large as the exponent associated with
the power law for the mean force, Fig. 15.

Before turning to the model, we note that the avalanche
data calculated from force time series for different packing
fractions are similar to those for different rotation rates. We
have tested that distributions for both avalanche size and
duration decay exponentially, and can be rescaled by the re-
spective mean avalanche size and duration to obtain good
collapse of the data.

IV. MODEL AND SIMULATIONS

In this section, we turn to a stochastic failure model,
based on one originally proposed by Kahnget al. f16g to
understand the experimental data of Albertet al. f13,8g. We
modify this model appropriately to account for several fea-
tures that are unique to the present 2D granular system. Spe-
cifically, we make the following two modifications to the
original model:

sid First, we allow the band of thresholds to be wide
enough so as to generate random force patterns, and we use

exponentially distributed thresholds to produce more realistic
force distributions.

sii d Second, we introduce a time-dependent threshold to
explain the slowslogarithmicd increase of the mean drag
force with the rate.

We also note that since the particles are only one layer
deep in the 2D experiments, we do not need any depth de-
pendence. In the remainder of this section, we first briefly
introduce the basic model. We then make modifications to
the model and perform simulations to compare with the
present experimental data.

A. The original spring model

The original model was constructed to simulate the drag
force experienced by a vertical cylinder inserted to a given
depth in a granular bedf16g. In this model, the grains move
with constant speedv in the x-direction, and the tracer par-
ticle is simply represented by a block, as shown in Fig. 22sad.
The tracer particle interacts with grains that are assumed to
be supported by force chains. The particle-tracer interactions
are modeled as linear springs with a force constantk0, where
there aren such springs.sThe assumption of a single spring
constant is in part justified for the present data by the analy-
sis of an effective force chain force constant,keff, in the
experimental data as in Fig. 13.d Necessarily, the spring con-
stant,keff, refers to the collective mean response, instead of a
force constant for an individual force chain. As time ad-
vances, each spring is compressed by an amountDx, which
is determined by the velocityv and byDt, the time interval
over which compression has occurred, i.e.,

f = f0 + k0Dx = f0 + k0vDt, s5d

where f0 is a small initial force proportional to the local
pressure in the system. This is illustrated in Fig. 22sbd. At t
=0, a spring makes contact with the tracer particle, corre-
sponding to the formation of a force chain. The spring is then

FIG. 21. Scale factor from Fig. 20sbd, i.e., the mean square
amplitude of the signal,kF2l, vs reduced packing fractionr. These
data again can be fitted by a power law.

FIG. 22. sad Schematic drawing of the failure model: the block
is a simplified representation of the tracer particle. Force chains in
the bulk of the granular system opposing the tracer particle are
modeled by springs with a force constantk0. The tracer particle is
always in balance with the collection of opposing springs/force
chains.sbd The force from each spring increases linearly with time,
until it fails at the point where the force reaches a threshold value,
g. In the physical experiment, this occurs due to the slippage be-
tween the tracer particle and the grains, or among grains them-
selves. After the failure of a spring, the force on the spring is reset,
and the threshold is updated with another value drawn from the
distribution of thresholds and the process continues.
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compressed as time advances. If the springsforce chaind is
too compressed, e.g., the forcef exceeds a threshold,g, the
spring fails, and the force on the spring is relaxed tof0. In
addition, the thresholdg is updated to a new value chosen at
random from an appropriate distribution. In the original
model,g was uniformly distributed over an intervalfg0,g1g.
Over time, the process of spring compressionsforce chain
formationd and failure continues. At any given time, the drag
force is the sum of the forces from alln springs.

The original modelf16g also assumes that the effective
force chain springs are much stronger than the external
spring associated with the machine that is pushing the tracer.
In such a case, the drag force, which is typified by stick-slip
dynamics, is a function of the strength of the external spring.
Kahnget al. focused on the stick-slip regime, since this cor-
responded to what was observed in the 3D drag experiments
by Albert et al.

In the present experiments however, the effect spring con-
stant of the drive is significantly larger than that of the par-
ticles. Consequently, we do not observe stick-slip behavior,
but rather random force fluctuations. We must take into ac-
count this different feature of our experiments, and we now
turn to appropriate modifications of the model.

B. Modification I: Wide threshold bands and exponentially
distributed thresholds

We begin by considering the effect of the width of the
threshold bandfg0,g1g. As one would expect, this width
qualitatively affects the drag force patterns. When the thresh-
old band is narrow, as in Fig. 14, forfg0,g1g=f0.49,0.51g,
the force time series exhibits a regular sawtooth pattern. This
is because all the springs fail almost at the same time, result-
ing in a regular pattern of buildup and release. When the
threshold band is wider, the force pattern becomes more ran-
dom se.g., fg0,g1g=f0.1,0.9gd. This more closely resembles
what occurs in the present experiments.

However, if the thresholdg is uniformly distributed be-
tweenfg0,g1g, the resulting force distributions are symmetric
with respect to the mean drag force, as shown in Fig. 23sbd
for a 10 spring system. The symmetry of this distribution
differs from those of the experiment, and simply reflects the
symmetry of the failure distribution. The data of avalanche
size distribution in Fig. 10 suggest that the probability of
finding a large event becomes exponentially small. Thus, it is
reasonable to assume that the distribution ofg’s is likewise
exponential. We expect that most of the time, the force
chains break at small forces, and only in rare events, do the
force chains survive to reach a large threshold. Using this
assumption, we obtain a force time series such as that shown
in Fig. 23scd. We show the resulting force distributionssfor
10 springsd in sdd. In contrast to Fig. 23sbd, these new force
distributions obtained with exponentially distributed thresh-
olds are significantly closer in appearance to the experimen-
tal data, as in Fig. 16.

Note that the mean force in the model is found by sum-
ming overn independent variables,xi, wherexi is the com-
pression of springi. The mean value of any one of these is
then x̄i =s1/2dḡ, where ḡ is the mean determined from the

distribution ofg’s. As n grows, we expect that the distribu-
tion of total forceF will approach a Gaussian with a mean
value nḡ and a widthÎns, wheres2 is the variance ofg.
Indeed, the statistical properties of the model follow from the
fact that the force is a sum overn uncorrelated random vari-
ables where the maximum of each variable is drawn from the
appropriate distribution ofg’s.

Apart from the force distributions, for other aspects of the
simulated dataspower spectra, distributions of avalanche
size/duration, and force chain force constantsd, uniformly
distributed thresholds do not lead to significantly different
results than thresholds that are exponentially distributed, as
long as the threshold band is wide enough. Below, we will
focus on the simulated data derived from exponentially dis-
tributed thresholds.

In Fig. 24, we show power spectra and their rescaled form
for different velocities calculated from the model. These data
are in remarkable qualitative agreement with the experimen-
tal data shown in Fig. 7.

In Fig. 25, we show insad the distributions of avalanche
sizes derived from the model simulations and insbd the re-
scaled distributions of avalanche durations derived from the
model simulations. Both distributions of avalanche size and
duration are roughly exponential for large arguments, as are
the experimental data, Fig. 10. Note, however, that the size
distributions in this figure are not rescaled while those in Fig.
10sad are.

Similarly, in Fig. 26, we show avalanche rate distributions
at different velocities insad and the derived effective force
chain force constant insbd. This figure compares well with
the experimental data shown in Fig. 13. The effective force
chain force constant from the simulation data iskeff=30.7,
which is of the same order of magnitude asnk0, wheren
=10 sthe number of springsd andk0=1 sthe individual force
constant of a springd.

C. Modification II: Decaying thresholds

The model so far has been able to reproduce a number of
experimental observations. However, if we calculate the
mean drag force,kFl, as a function of the medium velocity,
v, we find thatkFl is independent ofv, as shown in Fig. 27.
Figure 27sad shows force distributions for several different
velocities, and they all fall on the same curve, with almost
the same mean and variance. Figure 27sbd is a direct plot of
mean drag force as a function of velocity, which shows a
rate-independent result. This differs from the experimental
finding that the mean drag force increases logarithmically
with the velocity.

The fact that the model is rate independent is not surpris-
ing. The instantaneous force state is found by summing over
the n springs. The state of each spring does not depend on
the velocity of the block, but only on the displacement of the
block since it was last reset tof0. In such a displacement-
controlled system, there can be no velocity dependence.

One possible way to account for the rate dependence is to
recognize that there is failure of some contacts due to creep,
and we explore that possibility here. In this regard, we note
recent work by Hartleyet al. sFig. 2 in Ref.f7gd involving
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similar particles to those used here. These authors reported
logarithmically slow relaxation of the force chain network in
their 2D granular Couette system. Specifically, in these ex-
periments, 2D photoelastic grains were sheared steadily so as
to establish a strong force chain network. The shearing was
abruptly stopped and the particle-scale forces in a section of
the Couette annulus were monitored thereafter. The force
chains relaxedsbecame weakerd over many hours, with the
total stress in the system decaying logarithmically slowly,
presumably due to the collective rearrangements of the
grains and failure under creep at contacts that were near to
failure. Such failures became progressively more difficult
over time because, presumably, the contacts near failure be-
came less numerous, and also perhaps due to geometric con-
straints on successive rearrangements.

To make a connection with the model, we note that one
interpretation of the Hartleyet al. experiments was that the
force chains become logarithmically weaker over time,
which means that the threshold of each spring should de-
crease with time. This is illustrated in Fig. 28. For two pro-

cesses with different velocitiessv1.v2d, if the originally
chosen thresholds for a spring areg in each case, by the time
a spring reaches its failure point, this threshold has become
smaller. Sincev2,v1, by the time failure actually occurs, the
threshold for the slow processsv2d is smaller than that of the
fast processsv1d. The longer one waits, the smaller the
threshold. Hence, we assume the threshold,g, is time depen-
dent and decreases logarithmically with a time constantt0,

gstd = 1 −
logstd
logst0d

, s6d

wheret0 is a large valuesabout 105 times the time stepd that
sets the slow relaxation time scale/amplitude.

With such a decaying threshold,gstd, we recalculate the
drag force distributions and mean drag force for the model.
In Fig. 29, we show the drag force distributions for different
velocities insad, and their rescaled form insbd. Comparison
of Fig. 29 with the experimental data in Fig. 6 shows very
good agreement. Figure 30sad shows the mean drag force

FIG. 23. sad Force time series generated by the model for various widths of the threshold band,fg0,g1g, where the threshold is uniformly
distributed between theg0 andg1. When the threshold band is narrow, the time series follows a sawtooth pattern, and when the threshold
band is widened, the force time series become more and more random.sbd The force distribution of a random force time series with
fg0,g1g=f0.1,0.9g, and otherwise as insad. scd A random force time series generated from the model with an exponential distribution for the
threshold.sdd Force distributions derived from random force time series, such as the one shown inscd, for various numbers of springs. In
contrast tosbd, the force distribution with an exponentially distributed threshold is nonsymmetrical, and more closely resembles the
experimental data.
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from the simulation, which now has a slow increase with
velocity. Figure 30sbd shows the same data on a log-lin plot.
These results can be fitted by a straight line, indicating a
logarithmically slow increase now built into the model. This
figure compares well with the experimental data in Fig. 4.
Additionally, this modification to the model does not quali-
tatively change the features reported in the preceding sec-
tions.

In summary, the key point of the model is its assumption
that the force chains are modeled as “springs” with failure
thresholds chosen from a distribution. Thus, the fluctuations
and mean properties of the drag force are closely associated
with the force chain formation and failure. In Fig. 2, we
show a visualization of the loading up of the force chains and
their subsequent slipping. This understanding is useful in
particular because it underscores the important role of the
force chains in granular systems. The elastic nature of the
model is also interesting, given the current debate over how
forces are transmitted in granular systemsf11g.

Another interesting observation from the experiments is
the seeming contradiction between the rate dependence in
the mean propertiesse.g., mean drag force versus velocity,
mean avalanche size versus velocity, etc.d and the rate inde-
pendence of the fluctuationsse.g., rate-independent power
spectra, collapse of the avalanche size distributions, etc.d in
the data. However, this may be understood by noting that the
mean behaviorsor the DC part of the signald is rate depen-

dent, while fluctuationssor the AC part of the signald are rate
independent. This is also consistent with the failure model
we have discussed; i.e., once the level of the mean behavior
is set, the fluctuating components are subsequently set by the
mean behavior.

V. CONCLUSIONS

To conclude, through experiments and simple failure
models, we have characterized the drag force experienced by
an object moving slowly through a 2D granular material con-
sisting of bidisperse disks. The drag force is dominated by
force chain structures in the bulk of the system. The forma-
tion and failure of the force chains leads to strong fluctua-
tions.

FIG. 24. sad Power spectra,Psvd, of the force time series at
different rotation rates generated from the model.sbd The scaled
power,v0Psvd is plotted against the scaled frequency,v /v0, where
v0 is the rotation rate. The rescaled power spectra collapse nicely,
and follow a power law decay with an exponent of −2 for higher
frequencies, in good agreement with the experimental data shown in
Fig. 7.

FIG. 25. sad Distributions of avalanche sizes derived from the
model. sbd Rescaled distributions of avalanche durations derived
from the model simulations, where the horizontal axis is divided by
the mean avalanche duration and the vertical axis is multiplied by
the mean avalanche duration. Both distributions of avalanche size
and duration are exponential, in agreement with experimental data
shown in Fig. 10. However, note that the size distributions in this
figure are not scaled while the size distributions in Fig. 10sad are.
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We have considered the effect of three control parameters:
the medium velocity, the packing fraction and the tracer par-
ticle size. Experimentally, we find that the mean drag force
grows slowly slogarithmicallyd with the drag velocity, in-
creases rapidlyspower lawd with the packing fraction above
a critical value, and varies nonlinearly with the size of the
tracer particle. The system exhibits strong statistical invari-
ance in the sense that many physical quantities collapse into
a single curve under appropriate scaling: force distributions
Psfd collapse when scaled by the mean force, power spectra
Psvd collapse when scaled by the drag velocity, and ava-
lanche size and duration distributions collapse when scaled
by the mean values of these quantities.

We also show that the system can be understood using a
simple failure model, which reproduces many experimental
observations including the following: a power law with ex-
ponenta=−2 for the high-frequency portion of the power
spectrum, exponential distributions for the avalanche size
and duration, and an exponential fall-off at large forces for
the force distributions. The logarithmic increase of the mean
force with the drag velocity can also be accounted for if slow
relaxation of the material is included.

A number of questions remain. One of these is the non-
linear dependence of the drag force on the particle diameter.
Heuristically, one might expect that the drag force would
grow linearly in proportion to the number of force chains
contacting the tracer, and that this would lead to a linear

variation of the drag force with diameter. In this regard, the
fact that the tracers used here were only somewhat larger
than the grains is likely to be important. Obviously, the pres-
ence of weak rate dependence in the mean force is of inter-
est, and its origin is still not clear. The relative elasticity of
the particlessversus the driving machineryd may be impor-
tant in this regard, and future investigations with harder par-
ticles would be of interest. The frictional character of the
drag force in the dense regime is clear in these experiments.
It would be of interest to see what occurs as the packing
fraction is reduced belowgc. In the present experiments, the
particles experience friction with the base, so that it is not
possible to investigate the gaslike regime. Also, the present

FIG. 26. sad Distributions of avalanche rates for different rota-
tion rates derived from the model.sbd The force chain force con-
stant,keff, obtained by fitting a straight line to a plot of the peak of
avalanche rate vs the medium velocity. The valuekeff=30.7 is of the
same order of magnitude asnk0, wheren=10 andk0=1. This figure
compares well with experimental data shown in Fig. 13.

FIG. 27. sad Model force distributions at different medium ve-
locities. sbd The mean force vs the medium velocity from model
simulations. Bothsad and sbd show that the mean force is indepen-
dent of the rate. This figure illustrates the problem that the model,
so far, cannot account for the experimental finding that the mean
force increases slowly with the medium velocity.

FIG. 28. An illustration of two processes with decaying thresh-
olds. The slower processsv2d has a longer waiting timestc2d and the
faster processsv1d has a shorter waiting timestc1d. The longer the
waiting time, the more the threshold decreases.
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experiments were carried out in 2D, and 3D experiments
might yield different results. In this regard, it is important to
note that the fixed volume of the system is crucial, since it
considerably restricts the freedom of particles to rearrange.

Thus, a 3D analogue would require a fixed volume con-
straint, unlike the easier fixed pressure constraint for a con-
tainer with an open top.
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